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Solid Geometry

‘Geometry of the Platonic Solicts
and
Ceometry ofthe Cylinder, Sphére, and Cone

.ImégihatiOn is mofe'impbrtant‘than knowledge.
- Albert Einstein (1879-1955) ,

- Rudolf Steiner (1861-1925)

rrepanvy

-+ - By their very nature arithmetic and geometry are related to every part of man’s being. -
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Introduction

The three fundamental human capacities of thinking, feel-
ing, and willing need nurturing in every lesson, to the extent that
the subject matter permits, if the child as a whole is to be addressed.
The approach here is an attempt to meet that ideal. Teachers with
imagination will find yet other ways. Students in the eighth grade
often present a wide range of abilities. Some of what is touched on
here may need to be modified to meet the needs of a particular
class. .

The first part of this manual is a collection of plates as they
might appear in a student’s notebook. The drawiﬁgs need to be
very exact. Some students will want to use colored pencils, but they
are usually too soft, producing thick lines. The second partisa -

teacher’s guide describing some of the class activities thatlead to- o

the notebook entries.

I found the best ordenng of the mormng lesson to be Re-

'view; then Discussion of the new topic . and makmg notebook en-

tries, possibly relatmg to. actwntxes of the prevxous day; and ﬁnally,

_ .Constructmg the models Tlus actxvxty is. last because it is so ab-

sorbing that mormn ; sh: ck ‘1s about the only thing for whmh stu-
dents will put their partly-ﬁnrshed models away. :
All the model building and mathematlcs nught be too much

" for the time allotted to the solid geometry period. Lessons later in

the day scheduled for arithmetic practice might be used for either
building or mathematics. The arithmetic practice periods later in
the year might also be used for solid geometry. Students should not
be crushed by the mathematics nor should solid geometry become
just a crafts period.
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five regular polyhedrons with the four elements plus a fifth one, the
all-pervading “quintessence,” as conceived in his time (hence, of
course, the name Platonic solids); (2) symmetry, and the experience
of the sphere as the most perfectly symmetrical and balanced form
in space, which can circumscribe, or be inscribed in, any of the five
solids; (3) Kepler’s attempt to apply the regular polyhedrons, and
their inscribed and circumscribed spheres, to describe the ordered
placement of the planets known in his day; (4) the evocation of sur-
prise, in the students’ minds, after a previous and ready recognition
that there are infinitely many different regular polygons in a plane,
to discover that there can be no more than five different regular
polyhedrons, their first cousins in space; (5) the i impression on the
students that it is possible to prove the impossibility of more than
five, and that they, the eighth-graders themselves, will see the proof
and understand it; (6) a first example of the great‘principle of “dual-
ity” in space, clearly illustrated here, which will be expanded and
deepened in the study of Projective Geometry in high school; (7) -
Euler’s formula, relating the number of edges, vertices (or “corners”
for grade eight!) and faces in all our polyhedrons (E+V-F=2),
which holds for a countless number of ,m:egplar space forms, proof
of which must also be left for the high school; (8) the fact that certain
substances in nature crystallize in the form of this or that Platonic
solid (e.g., ordinary salt in cubes, pyrite in octahedrons and dodeca-
hedrons); (9) the golden section, of course, (10) the use of the dodeca-
hedral form as a curious and smple standmg calendar one face for
each month .. . and more e ' el )
In the end it is the md1v1dual teacher, the teacher’s ]udg-

" ment and interest and outreac.h that will determme the full value of

such a manual as the present one; for instance, in any one case,
whethe;- to suggest or to emphasize, to introduce a brief excursion,
or to make do with a passing hint. What also needs to be considered,
of course, are the nature of the particular class and the factor of time
limitation. In any case, this little volume presents a rich and ready
compendlum for grade eight on Platonic solids, together with a
practical and lively teaching approach, which will be welcomed by
novice and old hand alike. And the teacher will find that the



development set forth in the manual will enable him or her to ef-
fect the task at hand in a manner which is pedagogically effective

and mathematically meaty, lucid, and meaningful.

— Amos Franciscelli




Part 1
A Student’s Notebook
The Geometry
| of
Platonic Solids
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lntroduction

Our s.'f‘q&\[ began by imagining a cube counting
faces corners, and edges. We also determined the
shape of each face, how many meet at a corner, and
the angle that the faces make meeting ot an edge.
‘e designed a "net” that would ‘Foid_ up into q cube.
The ‘Fo\iowi.ﬁg page (“us‘i‘ra-‘i'éis.-fh'e. many possible
nets. After making a .cub‘é"v.s./.'e 'c“ivv.e-l-e.rm'med other

Proper‘i‘iés listed on (ﬁage 13

_",rrr//rr/}/rlllI//‘f/fIl
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Cube Nef with Tabs. ..
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Cube Properﬁes

. Number of faces: 6

2.Number of vertices (cornet's): g

3, Number of edqes: 12

4, Shape of each face: square

S Number of faces me.e'}"mg at a vertex: 3

6. Dihedral ahq[e.  G0°

7 Ecgcle' , i )
‘Kmudface Fo mxd edge = .5 |
. q‘ m\d-fcce to vertex: %= "'i—- 707

(o, .V'\t"d -¢ube o mid- face: —;‘525

;Il M d- Qube. o m«c\ ecigc’f‘r = ':'4 .707

2. Mid-cube +o verfex: LB . gy,

3. Voelume ! |

| 4. Surface area: b

i Duagl: octahedron
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Octahedron Net.
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Oc_Jfa hedron Pro Pctﬁes

. Number of faces: g
2 Number of vertices: ¢
3. Number of edges', (L
4,ShaPe of each face: :q_uiiq‘l’ercl triangle
€ Number of chcs,mee'l-'mg at a vertex' 4
6. Ec{qe e
,J'" [.132
7. Mi d-tace to vmd e.Age'. L - & -~ -289

€ Mld face {“o uer’rex"'.‘g, # 11332' = .8
  °] m\d od‘qheérOn ‘o rmc\ e&g . '7%.:-.5'
BT F’hd od‘a hedron +o mid- {-qce"‘[—‘zé%iﬁ = 408

&

.l( Mi d od‘qhedkon to Ver‘\'ex' A‘; = ,';"_H. = .707

JZ a4

""":z.\/olqme: 3 ° T3 T .47l |
13, Surface area: 243 = 2x1.732= 3. 444

e, Duali cube

15
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Octahedron Properties Worksheet

1. F{nc{‘\nq mid-face to mid—edge,

Fiest finding the altitude.
=\
a~+b" = h* "
| a
Cl.lv :h'l.__bk
a =4 h"=-b"
' b=g

a =4 17-(H*
— i Ly

=d =g T Adq 2 et

The altitude is

N
Mid-face to mid~edge measutes ;— of the altitude

. A l IJ? 3 . '
whlch s 35 -'-’-J; = 1232'=.2.89,

=

3. chhng mid-face +o vertex.

Mid-~face tovertex measures 3 = of Hne cdeqde.

e ESR S Iy F 1
which s RS 3 773 . SN

-~

10. ch\\ng mld-od'qhedron to m.d ?ace.
Bamid-octahedron. Notice that the mid-Face

5 ;
C.\nej\e at MiA“‘dCQ 1S a r\qbﬁ anq\e., ’szs- a
R L N A
AV . L Je 5 db_ _ 2.449 |
T T aT T e . < -10%

Mid-actahedron 4o mid-face = ,40%
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. Finding the volume.
The volume of a pyramid is found tobe § the yolume
ot a rectangular solid with +he same base and height, The
Volume of two pPyramids — +he o&ahe.a(ron being two
pyramids base to base — is. |

2. L&A rad

¢ e S mnrep D e — "=

| ;3‘,:'F'(nding, the surtace area.,

- A!‘.,_e_a.l’ ‘c‘p' ;Oﬁe."&‘rt'ang‘e = ’-2"15\1: %llJ—E = ‘,_%’

Area vo‘? g '+n‘qn3\es -“-'3-‘-"{% _?"23/?: 2-L13L = .46

Tke Sur‘ch_e. arecq o* an oc‘('qhe.droh with e.Age '-'.'l H 3.46‘{
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Dodecahed ron Net )

Part 1 .
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Dedecahedron Net Part 1.
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Make 2

Dodecakcd.mn Net Part 3.
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Dodecahedron Properties

[ Numb_er o{'\ {‘qces'. (L

) Numher of vertices: 20

3. Number ot e&c3¢51 30

.4. Sha Pé of each face: pentagon

$Number of faces meeting at q vertex: 3

6. Dual © Tcosahedron

21
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ICoSq\'\cd ron Prope.r{*'nes

I, Number of Facest 20

2. Number of vertices: 12

3. Number of edges: 30

4. Shape of each face: ec;qilq‘%e.rq\ triangle
5 Number of Faces meé'\'ing at a vertex: §

t. Dual+ dodecahedron

23
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Tetrahedron Net.
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Tetrahedron Properties

. Number of faces: 4

2 Number of vertices: 4

3. Number of edqes: &

4 Shape of each face: equilateral +riang ke

. Number of faces meeting af a vertex: 3

¢ Edge: | | | - o
7, Mid.- *Pac.e-%o m'zc\~edge',.f"l§ = [‘?L = .2§9. EEENE
8, Mid~tace to vertex: ’J-;_ = '“?L = .77
A.Mid +e_+rq)1edron to mid-face: ’{:~ ’"17‘_”7 20t

| ' ‘° n‘d +e+rahedron {'o mid e.dge ’E’ = l*'* 35‘4

,,"(l Mid- fe+qu€dron ‘\’o ver+ex' 'J"_"‘ 20 YR

| 4 4
12, Vo\ume' 'E' = 1‘41:* = lig |

| t3,5ur\téc§. atea : A3 = 1.732
1‘-(, Du.al‘; Se.['p



Tetrahedron Properﬁe s Worksheet

1. F‘ind(nq mid-tace to m'ad—e&gc. See Octahedron
Properﬁes Work sheet,

?.Fl‘nAinﬁ mid-face Fo vertex. See Octahedron Proper-

tres Worksheet

9. Finding mid-tetrahedron to mid-face. ¢
M = mid-face of the Frianqular base of the
fetrahedron,

D= mid -face of one of +he other triang ular T

taces. A'/

m

c'r‘q( AD) = altitude of the tedra hedron
& (= AB) = altitade o the triangular face
= mid - \'e‘l‘ra\'\ec\ron the m‘l'e.rsed'\on of q(Hudes
- :MB =DB = mid-fage +o mid-edge
First finding fre.’ﬂ*cxheclron al¥ifude CM .
e = Jemer = SIS = F % = -

Tetrahedron altitude

I

TM measures 5 CM . T 'L; de

Mid-terrahedron to mid-face. = i;._

l
2 Flw

~ -~ r -~ - ’
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10, Fincjinq mid-{*eﬂahec{ron 16 mid—e.che.

Inthe rici"ﬂ‘ ‘i‘rianq\e _\MB}T{‘I\:”,’J%. ¢
e 4L
T8 = J(—i’;‘f) (21 =dimd =% -
Az . A= ~ _A®
15 4 =
m\'d~+c+\‘qkec£ron to mid-eége:’@‘ A/
4 = B

i Finding mid-fdrq\\edron to vertex.
H 'd - ‘\'e.‘\'ra he dron to mid-tace = -1- fc’rvc\kedron altitude (see

itewm 4], Hne.ref-ore rmd fd'mhed ron ¥o Uer\'cx = :; tetra -

“f\'_‘io\\'ov\ a\{—.i'ude_' _‘!T’T‘_"

_r“d"t'&)fr’QL\ec\ ron +O M;d "{'-QCC = &

L*.
12 r&nalmg +he \Jo\u.me.

sc o.reo. x o\+u+ude, | | B

l
5 ba
.
=3t aanq}e area % altitude
| l
3 X3

‘.[.x.’_'f:. :__"W:IJ_Q_&__,JE-X,L
i 32 36 36 7 3

34T ~AE
-3 T

Y Fu‘.nd(nq surface qrea.

Surgacé atéa = 4X Qrea o?- One+rianc3|e.
l A3
4)&-{'[-—{ = ,/—3_
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Platonic Solids Summary X
Faces Vertices Edqges
Cube 6 g (L
Octahedron g b 12
Dodecahedron 12 . 20 30
lcosahedron 20 'L | 30 1L
Te*{qhedron 4 4 b
Note: Faces +Nevtices -7 = Edges {
There are only Five Platonic solids, i
= all faces are the same Vsl—:a'pe and size.
—all vertices have the same number of faces meeting.
-~ all edqes have the .sq'me,'c(i hedral Ianqle.
More than 3 Fah‘\'aaar\"sv, 3 sq,.uqres;s e.q'uﬂq‘te,ral | ‘?

Triangles cann ot form a vertex.
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The Octahedron
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Pact 1.

"The Dodecahedron’
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The ScLuarc Root A\gorl#km
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Part 2

The Platonic Solids

Imagine a cube in front of you. It has flat surfaces and edges
and corners. How many flat surfaces, or faces, does it have? What is
the shape of each? Are they all the same shape? The same size? How
many comers, or vertices, does it have? How many faces meet in a
vertex? Does each vertex have the same number of faces meeting?
How many edges are there? Does each face make the same angle
along the edge where it meets the next face? What is the measure of
that angle? This is called the dihedral angle.

Discussion leads to the following observations: There are six
square faces all the same size. There are eight vertices, three faces
meeting at each vertex. There are twelve edges whose dihedral angle

is ninety degrees.

Now supposing we wanted to construct a cube out of a piece

_; ) of colored paper, and that the pattern, or net, as it is called, is in one

piece after 1t is cut out. Folding here and there, and glumg would

‘then give us a'cube. What would that net look hke"

‘ Students draw at their desks and put results on the board o
for general approval This collecnon of net. drawmgs becomes a note”
= " book entry (See Notebook plate 11 Cube Nets.)

~ We will select one of the cube nets and draw iton a piece of
9 x 12 construction paper. But first, what is the maximum size of the
squares? We will also need tabs, narrow extensions here and there
where edges meet, for gluing. Where to they go? But if we draw
three inch squares, there will not be enough space for a tab needed
at one end of the net. Make the squares a little smaller? Cut a double
tab from scrap, folding it down the middle and gluing half to each
edge? Leave one of the squares without tabs, to be glued down last.

(See Notebook plate 12. Cube Net with Tabs.)

37
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Distribute colored construction paper (heavy weight is bet-
ter) and scissors. With rulers and sharp pencils, students draw, then
cut out and fold up to hide pencil marks. 1 walked around to see
who needed help, and I squeezed a few drops froma bottle of white
glue for each when they were ready, onto a piece of scrap paper, at
the same time supplying them with glue brushes (flat tooth picks). A
see-through coat on both surfaces to be glued works best.

Students might not complete their cube constructions before
the end of the lesson. The unfinished and finished projects can be
stored in brown grocery bags, one or two students to a bag, on a
shelf safe from damage. When the cube and other polyhedra are com-
pleted, a tiny shape of contrasting color with student’s initials could
serve as identification to facilitate returning them after an exhibit at
the end.

Next day students are again challenged with an exercise in
imagination. Imagine a large cube, as large as this room, outlined
with blue tape along the edges. Walk into it, and stand in the middle.
There is a ring or a hook fastened to the mid-point of the ceiling, the
mid-point of each of the four walls, and the floor just under your
feet. Fasten a red ribbon to the ceiling ring, pass it through the ring
‘on the wall in front of you, through the ring at your feet, through the

~ ring on the wall behind you, and back to the ring in the ceiling. Then

down to the ring on the wall to your left, through the ring at your

_ feef, through the ring on the wall to your right, and back up to the
. ceiling ring. Pull tight, tie a knot, and snip off. Fasten the red ribbon

to the ring on the wall in front of you, through the ring on the wall to

- your left, through the ring on the wall behind, through the ring on

the wall to the right, and back to the ring in front. Pull tight, tie a
knot, and snip off. |

- Now we have a cube with edges outlined in blue and a new

form inside, outlined in red. What can we observe about this new

f_orn'i? How many edges are there? How many vertices? How many

faces? What is the shape of each face outlined in red? How many

faces meet in a vertex?

(k((ta‘:((((('('(r#\t(rrrr(r.‘.
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Discussion leads to the following observations: There are six
vertices, the same number as the cube has faces. There are twelve
edges, the same number as the.cube has edges. And there are eight
triangular faces, the same number are the cube has vertices. The
faces are equilateral triangles. Because there are eight faces we call
this form an octahedron. And because it is related to the cube in the
manner shown, we express the relationship as a duality. The octa-
hedron is the dual of the cube.

Designing a net for the octahedron is not easy, so I draw a
rough sketch on the chélkboard.-Three— inch equilateral triangles fit
nicely on a 9 x 12 paper. For the notebook entry two-inch equilat-
eral triangles are a good: size. (See Notebook plate 5. Octahedron
Net.)

Next day all or nearly all the cubes have been completed. I

told the story of “The Ant and the Caterpillar,” in order to review
the Pythagorean Proposition and to prepare for the geometry prob-

lems that are to follow.
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The Ant and the Caterpillar

It was a very busy anthill, but rarely do ants suffer from over-
work. One ant did, héwever, and she was required to rest for a time
a short distance away, until she felt better. It happened to be at one
corner of a child’s cubical play block, lostin the garden under leaves
and grass. ‘

Even an overworked ant cannot sit and do nothing. She de-
cided one afternoon to explore this curious shape, walking along an
edge so as not to getlost: She cametoa fork on the path, took aright,
came to another fork, took a left and came unexpectedly to the home
of a bug. (Figure 1.) '

“Good afternoon, Ant,” said Bug. “Join me in a cup of tea?”

“Thank you,” said Ant, and they talked about the weather
and drank tea. o | '

“Come again tomorrow,” said Bug, and Ant came the next
day and the day after. | “ :

*It was a one inch cube. How far did Ant travel to visit Bug?
(See answer number 1.) o .

One day Ant took a different route, passing the home of Cat-
erpillar. - ‘ . _

“Good afternoon, Ant,” said Caterpillar. “Where are you off to? "

“I'm off to visit Bug,” said Ant. |

“But this is the longest way to go,” said Caterpillar. “You could
shorten the trip if you went diagonally across orie face of the cube
and then along the edge to Bug. I'll show you.” '

Now Ant had a short cut. (Figure 3.) .

*How far did Ant travel using the short cut? (See answer num-
ber 2.)




S Discussion leads to V2 + 1 being the distance.
~ What is V2 ? Guess. Is it 1.5? Sqtl“xaring 1.5 gives 2.25 which is
too large. Try 1.4 to see if that is closer. There must be a way to deter-
;r« , mine the value of V2 other than by trial and error. Here it is:
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The Square Root Algorithm

Divide the number into groups of two’s left and right of the
decimal point. In the case of ‘E: working it to three places, it looks
like this:

\2.00 00 00

From 2 subtract the largest square number (1) and put its
square root (1) above. Bring down two zeros. The trial divisor is
twice what appears above, followed by a blank.

1. -

B -/2.00 00 00

200000
2.)1.00

Divide 100 by twenty-something. It goes four times. Put4in
the blank and also above over the two zeros. Multiply 24 by 4 and
subtract from 100. Bring down two zeros.

1.4 - .

\2.00 00 00

1

24)1 00
9% -
28_)400

The new trial divisor is twice what appears above (28) fol-
lowed by a blank. Divide 400 by two hundred eighty-something. It
goes once. Put a 1 in the blank and also above the next two zeros.
Multiply 281 by 1 and subtract from 400. Bring down two zeros. The
new trial divisor is twice what now appears above, followed by a
blank. Divide. It goes four times. Put a 4 in the blank and also above

NN NN N NN
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the next two zeros. Multiply 2824 by 4 to verify. V2= 1.414 to three
Places. The remainder is small. No need to round up.

V2300000

1
24)100
96
281)4 00

281
2824)1 19 00
11296

Now Ant’s travel v_distance is 1.414 + 1 = 2.414 inches.

After Ant had gone, Caterpillar suddenly said, “Stupid!”
poihting to himself. “There’s an even shorter way. He visited Ant
and explained how she could goin astraight line to Bug, even though
it meant turning a corner, and save even more time. (Figure 4.) It
doesn’t look like a straight line, but if you laid out the two faces of
the cube, it would be a shorter distance than before, (Figure 5.)

*How far did Ant travel along this new short cut? (See an-
swer number 3.)

Calculations are made_using the Pythagorean Theorem. The
slanting distance is V5, But how far is that? First estimate two point

- something, then use the square root algorithm. Now Ant’s distance
'+ is 2.236 inches, somewhat less than before. - ' '

When Caterpillar got home, he said, “Stupid! Stupid! With -

- Ant’s cousin Termite the way could be madeshorter than ever.” Cat-

: erpillar hurried to Termite’s Placeand told him of his plans to shorten. -

the path for Ant when she visited Bi;g. ,

* Termite was happy.fof."éidiance to show off his skill. He po-
sitioned himself’alit the corner of the cube and bégan to dig. The chips
flew, and in a very short time Termite had tunneled a passage from
Ant’s place straight through the ¢ube to Bug’s place, shortening the .
distance more than ever. . . '

*How far is it now through the center of the cube from Ant’s
Place to Bug's place? (See answer number 4.) .

e
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After some discussion, students come to the idea that a right
triangle can be made going diagonally across the bottom of the cube
(\/2—) and up the edge, and then using the Pythagorean Theorem, the
length of the tunnel can be determined. Here is more practice using
the Pythagorean Theorem and the square root algorithm in a real-
life (!) situation. ‘[?T= 1.732 to three places. ,

Now Ant’s travel distance was about half the original dis-
tance. To celebrate, Bug put on the kettle, and they all talked about
the weather-proof passageway and drank tea.

Ant soon felt better and returned to the anthill with fond

memories of her adventure with Bug, Caterpillar, and Termite.

Answers:

1. 3inches.

2.V2+1 = 1414 +1 = 2.414 inches.

3.\5 = 2.236 inches.

4.V3 = 1.732 inches (about half the original distance).




Fig. 1 C

Fig. 2

- C
Fig. 3 A — .

Fig. 4

Fig.s_ ’ T

- Now let's make a list of all the  properties that can be attrib-
uted to a cube. FOHOng a dlscussmn Plate 4is completed. Item 7 is

the basis for further calculations. Perhaps the story of “The Ant and

the Caterpillar” will have been a preparatlon Notice that all answers
are decimalized.

In order for the morning lesson to include both mental activ-

/ity and solid model making, the Cube Properhes entry may need

two days to complete. Working on solid models is best scheduled at
the end of the lesson before recess.
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We have made a form with three-sided faces and a form with
four-sided faces. Can you imagine a form with five-sided faces, that
is, pentagonal faces? Here are some pentagons cut out of poster board.
Ilay one down and lay five around it, touching. Notice the space, the
triangular space between each of the pentagons that surround the
one in the center. If we lift each one at the outer vertex until adjacent
edges meet, a sort of bowl forms. Making a second such bowl and
using it as a lid, a form emerges that has many pentagonal faces.
How many? How many faces meet at a vertex? Here is the net for the
twelve-faced form. It is called a dodecahedron. Dodeca = twelve. Stu-
dents draw at their desks as I draw on the chalkboard givmg instruc-
tions at the same time. See the plate below for what this drawing will
look like.

Fig. 6

Draw a large circle with horizontal and vertical dlameters in-

| tersechng at O. Bisect the right side radius. With compass point on

the nudpomt of the radius and pencil at the top of the circle, draw an
arc cutting the horizontal diameter at A. With compass point at the
tdp of the circle and pencil at A, draw an arc cutting the circle right
and left. With compass point at the bottom of the circle and radius

" OA, draw an arc cutting the circle right and left. Draw in the penta-

gon.
Lay another sheet of paper under this one with an underpad
(desk protector) under both, and with compass point poke through
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the pentagon vertices. Remove the upper sheet and join the poke
holes in the new sheet to make a pentagon and a pentagram (five-
pointed star). An upside-down pentagon appears in the middle. Line
up the vertices of the small pentagon in the middle as though you
were going to inscribe a pentagon, but draw the lines outside the
pentagon instead.

In all that network of lines, can you see five pentagons sur-
rounding the one in the middle? Lay this drawing on a piece of
construction paper from which the dodecahedron is to be made.
Poke through all twenty points. Remove the sheet and join the poke
holes in the construction paper. Make two. The little triangles be-
tween the outside pentagons will become tabs. On one of the nets,
draw ten tabs around the outside so that the two nets can be joined.
When cutting in toward the middle pentagon to make tabs, leave

one pentagon without tabs (tabs on adjacent pentagons), that one to

- be glued down last.

Teachers should make this and all other models themselyves

) first so-that they can anticipate students’ problems.

The notebook entry, Octahedron Properties, might take sev- ‘
eral days to complete. Some entries can be completed immediately.

" Others will call for discussion and some challenging calculations.

Before finding nud-face to’ rmd-edge we need to fmd the

: altltude on which mid-face lies. Draw any equilateral tnangle and

blsect the angles. Angle bxsectors meet at mid-face. Usmg a com-

- passwith rmd-face to xmd-edge opemng, measure the altitude. Stu-
_ denis w111 find the altitude, to be three times mld-face to nud-edge

The rest of the calculatxon is- easy . :

How can we find the volume of an octahedron? We have
already noticed that we have two square-based pyrarmds base to
base. We first find the volume of one of them. *

Allkinds of math manipulatives can be purchased, but what
we need can easily be made. The pyramid net is a square with equi-
lateral triangles on each side and tabs where needed. For this project
file folders are sturdier than construction paper. Also needed is a
box with square base and open top, the base a hair larger than that
of the pyramid. Box height equals pyramid height.




48

To determine the ratio of pyramid volume to rectangular solid
volume (students can to this), place the pyramid into the box. Fill up
with sand. Level. Pour the sand into an empty container. Remove
the pyramid and pour the sand back into the box. Measure the height
of the box and the height of the empty space above the sand. Com-
pare. Students observe that the volume of the pyramid is one-third
that of the box with the same base and height. Now the volume of
two pyramids can be calculated knowing the edge of the octahedron.
All octahedron properties can now be calculated.

We have found the dual of the cube, namely the octahedron,
and have seen how they related to each other. Can we use the same
conditions for duality to determine some features of the dual of the
dodecahedron? How many faces in a dodecahedron? How many
vertices will its dual have? How many vertices in a dodecahedron?
How many faces in its dual? How about edges? What shape will the
faces of the dual of the dodecahedron have? How many faces meet
in a vertex? For some students a completed dodecahedron may be
needed to count. Visualizing might be too challenging. Guideline:

challenge but don’t crush.

After discussion it is observed that the dual of the dodecahe-
dron has twenty faces, twelve vertices, and thirty edges. Faces are
equilateral triangles, five meeting at a vertex. Because there are twenty
faces the dual of the dodecahedron is called an 1cosahedron Icosa -
twenty. : h

Hereis the 1cosahedron net, rough.ly drawn on the chalkboard.
Students draw directly on the construction paper making equilat-
eral tnangles with compass opening about one and three-quarter
inches. Distribute tabs such that one triangle has no tabs. This one is
glued down last. Equilateral triangles for the notebook entry of the
Icosahedron Net can be made with a one and one-quarter inch com-
pass opening.

Notebook entri‘es for Dodecahedron Properties and Icosahe-
dron Properties are fewer beca:use the mathematics required is be-
yond students in eighth grade and /or because of time constraints if
the morning lesson is only three weeks.
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The fifth solid model is the tetrahedron. This one is relatively
easy to make, giving students a welcome break from the challenges
of the dodecahedron and icosahedron constructions. But there are
real challenges in completing the Tetrahedron Properties notebook
entry. There may not be enough time, in which case one could limit
it to five entries. ,

Can more than three squares, five triangular faces, or three
pentagonal faces meet in a vertex? Discussion leads to the observa-
tion that in each case more faces would either lie flat or not fit. The
conclusion arrived at is that there are only five solid forms in which:
all faces are the same size and shape; all edges have the same dihe-
dral angle; and all vertices have the same number of faces meeting.

Review the individual properties of the five Platonic solids.
After a discussion the summary is put on the chalkboard.

What numerical relationship can be seen among faces, verti-
ces, and edges that holds good for each of the five solids? Some stu-
dents will point out that the number of faces and vertices alternate
among certain solids. But what we are looking for ultimately is:

Faces + Vertices — 2 = Edges

This rélatidnship was discovered by Leonard Euler, a Swiss math-
ematician. |

Some students are skillful and finish making all five Platonic |

solids quickly. They might enjoy making an octahedron in a cube to
illustrate duality. Begin to make a cube as before; but with a razor
knife or smgle—edged razor blade, cut windows out of three adjacent

. faces after folding. The other three faces afe needed to stabilize the

octahedron. Poke pin holes through the centers of these three faces.
Pins will later hold the octahedron in place whlle the glue dries. To
find the length of the octahedron edge, draw an isosceles right tri-
angle with arms equal in length to half the cube edge. The hypot-
enuse gives the compass opening for the equiléteral triangles that
make up the octahedron net.

49
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Platonic Solids in a Sphere

The five platonic solids each fits into a sphere, as might be
expected from a study of their symmetry. Drawing these in a circle
provides more drawing practice and enjoyment.

For the cube, octahedron, and tetrahedron, begin with a hexa-
gon in a circle and join the vertices. For the dodecahedron, draw a
larger circle and begin construction as for a pentagon. As I drew on
the board, students followed instructions and drew at their desks:

o With compass point, poke points O, A, and B
through on to a clean sheet underneath. -

© Remove the top sheet and find the poke holes_dn‘
the second sheet. '

o With qenfer O and radius OA, draw a circle.

‘o With center O and radius OB, draw another circle. -

_ ° Using A as one vertex, draw a hexagon and -
‘hexagram (six-pointed star), and diagonals. '

© Connect points on the large circle with points on
the small circle. If the dodecahedron is not easily seen even after

strengthening the lines as in the drawing, poke points throughon to

another sheet to get a dodecahedron without all the construction
lines. Poke through also the center point.
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® Draw a circle touching the vertices so that the
dodecahedron appears to be in a sphere.

The beginning circle for the icosahedron can be smaller.
® Begin as with the dodecahedron to the point where

two circles are drawn on the second sheet.’

® Draw a hexagon and three short diagonal lines be-
tween the circles.

® Complete as shown in student notebook.
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The Golden Section — The Divine Proportion

The drawing of the pentagon and pentagram provides an
opportunity to introduce students to the golden section or the di-
vine proportion. This ratio in a rectangle was considered by the an-
cient Greeks to be the most pleasing of rectangular shapes. The con-
struction of the golden rectangle begins the same way as the con-
struction of the pentagon. The side of a square is extended as fol-
lows:

v

If the width of the square is two units, the sémi-diagonal is

Fig.7

V5and the length of the rectangle becomes V5 + 1. The ratio of length

towidthis
Vs+1
2

Given V5 = 2.236, this ratio decimalized becomes 1.618. The
ancient Greeks called it the golden section. Kepler called it the di-
vine proportion.

In the isosceles triangle that forms a tip of the five-pointed
star, students find the ratio of the slant height to the width of the
base. Using ordinary rulers marked in millimeters, one can be satis-
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fied if they get 1.6. The pentagon /pentagram contains other isosce-

les triangles with the same ratio. These are called golden triangles.
The golden ratio is also found in plant growth and in the

human body proportions. The navel, for example, divides a person’s

height into the divine proportion, very nearly.
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Cylinder, Sphere, and Cone

This is an attempt to explore the properties of and relation-
ships among cylinder, sphere, and cone in an eighth grade geometry
class, such that direct observation and careful thinking lead to gen-
eral formulas. In many textbooks these formulas are merely stated
without explanation to be memorized. And the problems that fol-
low are thought to complete the requirements for the education of
the child in this branch of geometry.

Teaching mathematics with the guideline “Experience before
Abstraction” is a more effective approach. It also provides an oppor-
tunity to address each of the fundamental human capacities of think-
ing, feeling, and wxllmg Clear thinking is required. Feelings of won-
der are droused.-Fhe will i is engaged In carrying out the experiments
and recording them in notebooks. v

" The volume relationships of cylinder, sphere, and cone can
be experienced directly. Volume and area formulas can be determined
by observation. We need a can, a ball, and a cone, with can and cone
diameters and helght equal to the diameter of the ball. A softball fits
nicely into a cylindrical paperboard oatmeal container. Cut the con-
tainer down so that the height (inside measurement) equals the di-
ameter. The ball then fits into it level with the top. A cone can be

made out of a piece of heavy-weight paper. Details are given as a
guideline if cylinder and sphere dimensions differ.
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Making a Cone

° Find first the slant height of the cone to determine the
radius of the circular paper from which the cone is to be made.

The container (cylinder) height is equal to the base diam-
eter which is twice the radius or 2r. The distance of the edge of the
container top to the point where the apex of the cone will be when
it sits in the container, is the radius or r. The slant height of the cone
(s) is the hypotenuse of the right angle thus formed. (See the dia-
gram on page 56.)

s=V2r+ 2 = V52 = Bt

. The radius of the oatmeal container is 4.9cm. The slant height
of the cone (s) will be ‘/5 x 4.9 or 2.236 x 4.9 which is nearly 10.9cm.

© Find the portion of the circular paper needed for the cone.

The container circumference 2r = 2 x 3.14 x 4. 9 =30. 7em.
The circular paper circumference = =2s=2 x 3.14 x 109 = 68 Scm.

The porhon of the circular paper needed in degrees

307 x 60 = 141 degrees
685 1

Cut 161 degrees (plus tab) from the circular } paper, fold

around, glue or tape, and we have a cone that fits exactly into the
,cylmder '

Astudent could also make a cone if duectxons are prov1ded
Draw a circle with radius 10.9 cm. Cut out a 161-degree segment

' leavmg a tab. Fold around and glue.
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_ Tab fo; gluing

S =5r

S =ABr

Fig. 8
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Volume Relationships of
Cylinder, Sphere,
and Cone

Place the softball into the container. It fits loosely. Pour in
fine sand, moving the ball back and forth a little to allow the sand to
sift down around it to the bottom. But hold the ball down so that it
doesn’t lose contact with the bottom. Fill to the top and level. Pour
everything out, return the sand, and measure the space that is equiva-
lent to the volume of the ball. Repeat this procedure with the cone.
Students also measure the inside height of the container. Compare
the figures. It will be observed that the ratios of the volumes of
cone : sphere : cylinder =1:2: 3, Arcl'umedes discovered this more
than 2000 years ago. |

- -

57
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Volume Formulas for Cylinder, Sphere, and Cone

The volume of the cylinder like that of any box is equal to
the area of the base multiplied by the height. But we need to know
how to find the area of the circular region, the base of the cylinder,
before we can proceed. And before that we need to know how to
find the circumference of a circle because we need the circumfer-
ence to find the area.

o Finding the circumference of a circle.

Students measure the diameters and circumferences of many
round objects—pot lid, garbage can lid, hula hoop. When measure-
ments have been made as accurately as possible, divide the circum-
ference by the diameter working the result to two decimal places.
Answers will vary slightly, but the average of all calculations will

closely approximate 3.14." Notice how close 0.14 is to the decimal-

equivalent of 1/7. This approxlmatlon of the ratio of circumference
to diameter is called pi, written also &, with values expressed as 3.14,
31/,,2/,, or even3.1416 as used for precision engineering. So, be-
cause the circumference of a circle is three times its"diameter and a
little more, the formula for the circumference is: C = ned or C =2nr (r
being the radius). ’ '
o Finding the area of a circle.

Imagine an orange slice cutin half, separated, and both halves

cut several times from the center to the rind (Figure 9). Pull the half

slices apart (Figure 10) without breaking the rind, and push thetwo

halves together (Figure 11). What we really want is a rectangle, so

we need to make very many cuts from the center to the rind, again

pulling apart and pushing the two halves together. Now the wedges
are so narrow that all is a blur of wedge edges. (I didnteven try to




draw them.) And the curved rind now appears as a straight line (Fig-
ure 12). The area of the rectangle, length times width, becomes half
the circumference times the radius.
Area=1/, x 2nr xr = nr’
Now that the area of a circle can be expressed as n r’, we can
use that formula for calculating the base of the cylinder. The volume
of a cylinder, again, is the area of the base multiplied by the height.

Fig. 9

Fig. 10
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Fig. 11

Fig. 12

The volume of a cylinder = & .rz.h = nr’(2r) = 2n r

The volume of a sphere being 2/5 that of the cylinder =

2/3 x2me® = 4/303.

The volume of a cone being 1/ that of the cylinder =

S Wsxomd =2y -

If the volume of the cylinder, 2 1, is expressed as 6/3y 1,
the 3: 2 : 1 ratios of the three volumes can be seen. Conventionally,
because cylinder and cone he1ghts can vary, the formulas for cylin-
der,nt rzh, and for cone, 1/35 £, are used. Obviously the formula for
the volume of the sphere, 4/35 13, is used.
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Areas of Sphere, Cylinder, and Cone

¢ Finding the area of a sphere.

Styrofoam balls of diameter about 12cm (4 3/4”) can be pur-
chased at a craft store. Cut one in half. Starting at the pole, wrap a
length of soft rope spiral-wise.round and round until the equator is
reached. Mark the rope. Wind the same rope spiral-wise on the flat
surface of the half ball, starting at the center, until the equator is
reached. Compare the length of rope needed for the curved surface
with the length needed for the flat surface. The curved surface is
found to need twice as much ropé. This leads to the observation: the
area of a sphere = 4w .

o Finding the area of the curved surface of the cylinder.

The area is equal to the circumference of the cylinder multi-

plied by the height, 21 r x 2r = 4% r’. Compare this with the area of

the sphere. This is another of Arclumedes discoveries.
Lackmg a styrofoam| ba]l the rope could be wrapped around

the north pole of the softball spn'al- , ending at the equator. The

bottom of the oatmeal contamer can serve as the flat surface.

° Finding the area of the curved surface of the cone and the |

total area:

~ Onewayisto begm thmkmg about the triangular surfaces of
a pyramid with many faces. The area would be that of the number
of triangles multiplied by 1/, bh, where b is the base and h is the
height of each triangle. The area of the pyramid would then be
1/,bh+ 1/,bh+1/,bh+...1/,bh+. That could be expressed as
1/,h (b+b+b+...+b). Increasing the number of triangles, the wedges
get increasingly narrower and the bases get increasingly shorter. The
sum of the bases approaches the circumference of a circle (2rr), and
the pyramid is ultimately transformed into a cone. Therefore, we

61



62

can express the area of the curved surface of the cone as 1/,h(@2nr)
or rrh. Now h is the slant height of the cone used in our demonstra-
tion. So 7 r h becomes 7 rs. We calculated the slant height to be
\E r, so the area of the curved surface in this case =T 1 (\].S-r) or \5
n r*. This is not related in a simple way to any other formulas or
relationships we have found, but it has its own interesting proper-
ties. The total area of the cone is the area of the curved surface plus
the area of the circular base. That is, \E. nit+nr or nrr(5+1)or
27’ x (\j; 1/,). Students might recognize ((V5+1)/,) as the divine
proportion if that topic has already been introduced in connection
with the construction of the pentagon/pentagram. Now it can be
seen that the total area of the cone is equal to the area of a half sphere
multiplied by the divine proportion, or twice the area of the base
multiplied by the divine proportion.

Summing Up
Volume observation: Cylinder : sphere : cone=3:2: 1
Area observation:  Sphere = cylinder’s curved surface
Volume formulas: ~ Cylinder=m= r’h o

Sphere =4/ 3T
Cone =1/3n’h

Area formulas: . " Cylinder curved surface = 4 nr

- -

Sphere = 4nr’

Cone curved surface = Trs
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